Hochschulschrift (Dissertation)

Open University of the Netherlands (OUNL), Heerlen, The Netherlands, 2009

ISBN: 9789079447312

URL: http://hdl.handle.net/1820/2084

Learners increasingly use the Internet as source to find suitable information for their learning needs. This especially applies to informal learning that takes place during daily activities that are related to work and private life. Unfortunately, the Internet is overwhelming which makes it difficult to get an overview and to select the most suitable information. Navigation support may help to reduce time and costs involved selecting suitable information on the Internet. Promising technologies are recommender systems known from e-commerce systems like Amazon.com. They match customers with a similar taste of products and create a kind ‘neighborhood’ of likeminded customers. They look for related products purchased by the neighbors and recommend these to the current customer. In this thesis we explore the application of recommender systems to offer personalized navigation support to learners in informal Learning Networks. A model of a recommender system for informal Learning Networks is proposed that takes into account pedagogical characteristics and combines them with collaborative filtering algorithms. Which learning activities are most suitable depends on needs, preferences and goals of individual learners. Following this approach we have conducted two empirical studies. The results of these studies showed that the application of recommender systems for navigation support in informal Learning Networks is promising when supporting learners to select most suitable learning activities according to their individual needs, preferences and goals. Based on these results we introduce a technical prototype which allows us to offer navigation support to lifelong learners in informal Learning Networks.

This Dissertation is licensed under a Creative Commons License .