
Software Engineering and eLearning: The MuSofT Project [1]
www.musoft.org

Ernst-Erich Doberkat , Gregor Engels , Jan Hendrik Hausmann ,

Marc Lohmann , Jörg Pleumann , Jens Schröder

Dept. of Computer Science,

University of Dortmund,

Germany

ernst-erich.doberkat@uni-dortmund.de , joerg.pleumann@uni-dortmund.de ,

jens.schroeder@uni-dortmund.de

 Dept. of Computer Science,

University of Paderborn,

Germany

engels@uni-paderborn.de , hausmann@uni-paderborn.de , mlohmann@uni-paderborn.de

urn:nbn:de:0009-5-2016

Abstract

eLearning supports the education in certain disciplines. Here, we report about novel

eLearning concepts, techniques, and tools to support education in Software Engineering, a

subdiscipline of computer science. We call this "Software Engineering eLearning". On the

other side, software support is a substantial prerequisite for eLearning in any discipline.

Thus, Software Engineering techniques have to be applied to develop and maintain those

software systems. We call this "eLearning Software Engineering". Both aspects have been

investigated in a large joint, BMBF-funded research project, termed MuSofT (Multimedia in

Software Engineering). The main results are summarized in this paper.

Keywords: Software Engineering, learning object repositories, eLearning community

portals, reusability and interoperability, new media in technical education

1 Introduction

Software has become a key element in all aspects of day-to-day life. Thus, a high quality of

software should be one of the most important objectives of any software development and

maintenance activity. To achieve this, high standards in the education of people, who are

responsible for and involved in developing software systems, are indispensable.

Software Engineering is the subdiscipline of computer science that deals with concepts,

techniques and tools for supporting the development of high quality software systems.

Software Engineering has gained an increasing importance during the last decade. In the

meantime, nearly all computer science departments have established a chair in Software

Engineering and changed their computer science curricula to contain several courses and

practical trainings in Software Engineering.

a b b

b a a

a

b

Issue 2
2005

Licence: fDPPL Any party may pass on this Work by electronic means and make it available for download
under the terms and conditions of the free Digital Peer Publishing License. The text of the license may be
accessed and retrieved at http://www.dipp.nrw.de/lizenzen/dppl/fdppl/f-DPPL_v1_de_11-2004.html.

1

file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/res/#ftn.d9044e4
http://www.musoft.org
http://www.musoft.org
file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/eleed.campussource.de___
file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/eleed.campussource.de___
file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/eleed.campussource.de___
file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/eleed.campussource.de___
file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/eleed.campussource.de___
file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/eleed.campussource.de___
file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/eleed.campussource.de___
file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/eleed.campussource.de___
file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/eleed.campussource.de___
file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/eleed.campussource.de___
file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/eleed.campussource.de___
file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/eleed.campussource.de___
http://www.dipp.nrw.de/lizenzen/dppl/fdppl/f-DPPL_v1_de_11-2004.html

However, teaching Software Engineering is a tough problem. This is due to the fact that

benefits of Software Engineering concepts only become visible and understandable for

students if they are applied to realistic problem scenarios of appropriate size and

complexity. Those realistic scenarios are hard to present in classroom situations or even

plenary lectures. On the other side, due to the huge number of students in the first years of

computer science studies, it is not realistic to send all of them to industrial software

projects.

This distance between realistic problem scenarios and didactical limitations can now be

bridged by eLearning concepts and particularly by the use of multimedia techniques. This

was one of the main objectives of the MuSofT (Multimedia in Software Engineering) project,

the results of which are reported in this contribution. We will start with an overview of the

objectives and organizational structure of the MuSofT project in Section 2.

Our eLearning concepts for teaching Software Engineering topics, which we termed

"Software Engineering eLearning", are presented in Section 3. We will report about three

selected approaches within the MuSofT project to deploying multimedia and eLearning

techniques for teaching Software Engineering concepts.

First, we will illustrate how dedicated videos help to teach requirements elicitation on

one hand and the usage of complex software development tools on the other hand.

Second, we will illustrate how animations support the teaching of complex data

structures and algorithms. Particularly, the dynamic behavior of data structures can

intuitively be visualized by animations.

Third, we show how specially designed lightweight modeling tools support an easy

access to specific Software Engineering concepts and ease their understanding by

students substantially.

eLearning means to use the computer and appropriate software systems to support

students during their process of learning and understanding new concepts in a certain

discipline. Thus, independent of a certain discipline, those eLearning supporting software

systems have to be developed. This led in the past years to a huge number of software

solutions ranging from complete eLearning management systems, over discipline-specific

internet portals up to small dedicated support tools. Most of these tools, environments, and

software solutions ignored the fact that all these software systems should be build

according to well established Software Engineering principles and standards. Only this

would have ensured that the developed software fulfills minimum quality standards like e.g.

portability, interoperability, adaptability, or reusability.

We call this aspect "eLearning Software Engineering". In Section 4, we will report about

different techniques to ensure a high quality of eLearning support environments. This

ranges from the development of dedicated tools over technical and legal issues to ensure

interoperability of eLearning material up to the development of a comfortable internet portal

for accessing eLearning material over the web.

The constructive process of creating eLearning material or dedicated software support tools

always needs to be accompanied by an analytical evaluation process in order to check and

guarantee that constructed solutions really improve the learning process of students. Thus,

a continuous critical evaluation with a special emphasis on the gender aspect was also an

important aspect within the MuSofT project and will be reported on in the following sections.

•

•

•

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 2

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

The paper is rounded up with a conclusion in Section 5 and some ideas for future

exploitation of the MuSofT results.

2 The MuSofT project

The call for proposals in summer 2000 made it clear that the funding agency wanted to

fund projects emphasizing the following two key aspects. On the one hand, the projects

were to use multimedia for teaching the respective disciplines, covering as wide a part as

possible of the subject. On the other hand, the projects had to guarantee a lasting

contribution to academic teaching, even supporting other forms of teaching as in e.g.

continuing education. All this was to happen given a potentially unstable financial

background after funding would have expired, and given a somewhat dynamic

technological development in the area of multimedia.

We decided that we wanted to focus the project thematically on a stable core in teaching

Software Engineering, covering as much ground as we could in a reliable and attractive

way. We decided furthermore that we wanted to jointly pursue the two goals of developing

methods for teaching and laying the ground for a firm infrastructure on which to base

further developments including broadening what we soon called the customer base. We

discussed the addresses: would we want to talk to the students directly, or would we

address our colleagues, addressing their needs and providing them with the material, which

they could take and use it for enriching their own? Given the diversity of approaches to

teaching Software Engineering, the multitude of programs into which concepts from

software technology are integrated, and the potential goal of supporting continuing

education with its very different assumptions on the participants' knowledge we decided

that we did not want to address students directly but rather offer help to our colleagues.

Thus, we ended up with the ambitious goal of providing a service to the German-speaking

Software Engineering community.

A necessity for providing this service was a central, well-known distribution site on the

Internet where authors could offer their material and potential users could easily find

material suiting their requirements. We have termed this distribution site the MuSofT portal.

Its goal is the management and distribution of individual learning objects contributed by the

various partners and the facilitation of sustainable reuse of the material inside and outside

the MuSofT community.

Although addressing teachers rather than students, we had to make some assumptions

concerning the students' base knowledge that could be taken for granted. We assume that

the students would have taken the introductory courses in computer science, so that they

would be familiar (if not fluent) with one object-oriented language, in this way posing

minimal demands on the students' linguistic competence. Students from other engineering

disciplines usually meet this assumption as well, and since our subject is usually in one or

the other form a topic in most engineering curricula, we decided to also include Software

Engineering as a service to teaching engineers into our project. We did not stop here,

either: teachers' education for teaching computer science in secondary schools should

incorporate topics from Software Engineering, providing students with a glimpse at the

realities of software construction mirrored through sound engineering principles. So we

thought it a good idea to incorporate an explicit component dedicated to this class of

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 3

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

students (and, since computer science is an emerging subject in German secondary

schools, far from having the stability of, say, mathematics or physical education, we wanted

to contribute to making some principles of software technology popular in secondary

schools). Consequently, we wanted to address three sectors: Software Engineering as a

subject in computer science curricula, in curricula for engineers, and finally as a topic in

education.

Given the desire for as complete a coverage as possible, but constrained both by the

budget and possibly by the number colleagues that could be incorporated into the project,

we decided that we wanted to emphasize these topics part of which will be discussed in

greater detail later on:

the basic tasks in requirements analysis and realization (video based requirements

elicitation, development of information systems, software technology in teachers'

education)

structures in software development (software architectures, design patterns, algorithms

and data structures, software deconstruction)

selected topics in the development process (the V model, software quality

management, introduction to the Unified Process, project management)

The consortium consisted of well-known experts dealing with the following areas:

Silke Seehusen (Fachhochschule Lübeck) provided models for design patterns

Gunter Saake (Otto-von-Guericke-University Magdeburg) dealt with database issues

Johannes Magenheim (University of Paderborn) was in charge of modules for

educating computer science teachers

Udo Kelter (University of Siegen) developed teaching material for the development

process

Andy Schürr (initially University of the Federal Armed Forces, Munich, then Technical

University of Darmstadt) took care of data structures with their particular relevance for

Software Engineering

Fritz Schmidt (University of Stuttgart) focused on process models with emphasis on

their use in the engineering discipline

The authors were in charge of requirements engineering (Gregor Engels), and of tools

for software architecture and for process modelling (Ernst-Erich Doberkat).

Given the list of topics, it is clear that we had to exclude a great many issues that we would

have liked to address, but that we could not. Yet, this omission is not necessarily

permanent, given that we plan a systematic extension that will be discussed briefly in

Section 5.

•

•

•

•

•

•

•

•

•

•

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 4

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

Figure 1 - Structure of the MuSofT project

The topics handled by the MuSofT project may be visualized as a vertical structure in which

teams located at the project partners' institutions would work. However we saw that the

project might disintegrate if there would be only teams working in isolation. Then we would

have results that would be superficially coordinated, possibly through a common

vocabulary, but there would be no proper integration, rendering the whole enterprise a

project unto its own, which in turn would jeopardize our intention to provide a service to the

German speaking software technology community. This leads us to propose an additional

horizontal structure with tasks that are of joint interest which were organized as committees

(Figure 1).

Topics of concern included:

The didactics of teaching modules: the main concern was that we would not find a

common language and a common didactic approach, manifested in the concern that

we would use a non-compatible terminology, and that we would violate fundamental

didactic principles (after all, we had people from computer science education on our

team). This committee was in charge of helping to establish a common didactic

understanding.

Describing modules: aiming at making our modules available to the public and

having to discuss the development within the consortium we wanted to find a common

way of describing the content of our teaching units. Scrutinizing different proposals

from the literature we settled for the LOM approach. This entailed then finding a

suitable subset of the attributes and a viable way of performing the attribution, it will be

described in Section 4.2 in greater detail.

Teaching engineers: the incorporation of engineers was planned essentially through

two measures. They should be exposed to a basic level of techniques, taking into

account that engineers want to apply these techniques in the first place, and they

should exercise the material through specially selected exercises or projects. This

•

•

•

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 5

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

committee was in charge of guiding the consortium through this process. It turned out,

however, that the basic level of exposition was of interest to computer scientists as

well, and that the specially selected exercises and projects could be taken from the

supply of computer science. So we abandoned this group rather early in the project.

Constructing the portal: we wanted to focus on collecting our material and offering

an entry point for exporting it; we will describe this key point in Section 4.4.

3 Software Engineering eLearning

In this section, we will report about different approaches within the MuSofT project to

deploy video and animation techniques as well as dedicated lightweight tools to support

teaching of Software Engineering topics.

3.1 The use of video techniques

Requirements specification a branch of Software Engineering that only make sense if you

consider reality. In an ideal world, a customer would provide a complete set of technical,

functional, and non-functional requirements to a software developer (or a software

company). The developer could then proceed to create a solution based on this input. In

the real world, however, requirements specification techniques is a field of research in its

own right because the elicitation, notation and analysis of requirements is an intricate

process which is prone to problems like information overflow, contradictions,

misunderstandings, and unjustified assumptions. In fact, the CHAOS report of the Standish

Group [Standish 1995] lists problems in the requirements gathering phase as the top

reason for project failures. It is thus important to teach students the use of techniques for

requirements specification.

In teaching requirements engineering, we can identify an inherent obstacle. Most of the

problems in gathering the requirements stem from the fact that the requirements are

formulated and posed by persons that are unfamiliar with the process of requirements

capture, have no knowledge of the technical terminology used in Software Engineering,

and cannot distinguish requirements towards a software system from the working context

surrounding it. There is furthermore the problem that the input is typically incomplete and

can even be contradictory if multiple stakeholders have been interviewed.

A good lecturer, however, is always trying to present consistent, precise and complete

information to his students. He is aware of the technological terms and automatically

categorizes information according to his knowledge. If such a lecturer tries to present a

requirements engineering problem, he will find it very hard - if not impossible - to keep this

knowledge from influencing his presentation in a way as to give students hints on the

solution of the problem. In other words, it is impossible for him to play ignorant.

The use of video techniques is a way of solving this dilemma. By relying on an external

medium for the presentation of the problem domain, the lecturer can be sure that no

solution hints slip into the presentation. This effect is maximized if videos can be obtained

from external sources that are not influenced by the intentions of requirements engineering.

Thus, the influence of the lecturer is eliminated from both the production and the

•

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 6

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

presentation of the example. A video does furthermore present the full complexity of

realistic work surroundings and the activities carried out there. To handle this audiovisual

complexity, to avoid information overload, and to form the right abstractions is an important

part of requirements engineering. If the problem domain is presented by a text instead of a

video, this aspect gets lost since the text usually already comprises abstractions from the

complex reality of the problem.

In the MuSofT project we have heavily made use of video techniques to present problem

domains for requirements engineering techniques. Different levels of complexity have been

chosen to supply material for different learning situations. For the lecture, we could obtain a

video from a machine manufacturer (originally intended for marketing purposes) which

describes the operations of an automated storage system for a hospital. We have used this

video to present the domain and apply the techniques of requirements specification to build

UML models of the relevant static structures and operation flows of the domain. Students

were then requested to apply these techniques in exercises. For these exercises, we

employed videos showing playing situations from a board game (Mississippi Queen, [Hodel

1997]). Again, the videos formed the only description for this domain and students had to

create models based on these videos. Another video presented to students shows an

interview in which information about the system to be developed is given by a customer to

a software developer. In a final example, we wanted to present more specialized problems

for the application of goal-oriented requirements capture techniques. Since these are

advanced concepts, we had to create videos showing scenes from a business context but

with problems for which the application of goal-oriented techniques is especially profitable.

These videos serve both as a motivation for goal-oriented analysis and as a basis for its

application.

Our experiences with employing these videos in teaching were very positive. We have

provided this course to almost 2000 students over the last four years. All technical

problems with presenting or distributing the videos were easily overcome. Direct feedback

by the students (as recorded by questionnaires) revealed the videos to be a very welcome

variety to the usual lecture format. However, the students also realized that the exercises

based on the videos present additional problems. They had to cope with higher abstraction

distances, incomplete information, and overall with the fact that there is no single optimal

solution. The students were uncomfortable with these problems: up to a 33% requested

"more technical examples", up to 55% indicated problems in "debating different solutions".

These numbers indicate that we were able to sensitize the students for the problems of

requirement specification. This sensitivity forms a very good motivation to learn Software

Engineering techniques.

Another example for the representation of reality in teaching Software Engineering

techniques is the usage of tools. Knowledge about and skills in some standard tools are a

standard goal of Software Engineering education. Only the combination of knowledge on

why and when to do something and the capability to actually do it make a complete

Software Engineer.

While many high-level concepts of Software Engineering can (and often have to) be

described in an abstract way, the use of tools is necessarily a very practical and realistic

kind of teaching. It is on the other hand also a kind of teaching which is below the usual

abstraction level of university teaching. Thus, many lecturers are bored by these details

and skip them in favor of more interesting topics.

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 7

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

Video techniques once again offer a solution for this specific problem. By producing a

suitable teaching video which contains instructions for the use of a tool, the students have a

very practical help in applying the tools for their exercises and the lecturer is unburdened

from teaching tool details again and again.

In the MuSofT project, we developed a multi-part video presenting the concept and

practical use of the CVS version control tool [Kelter 2002]. Version control is a crucial

aspect of virtually every software development project and CVS is the most prominent tool

to support it. Thus, using CVS can be considered a basic skill for all software developers.

By combining animations which illustrate the fundamental concepts of version control and

actual screen movies providing detailed instructions on how to carry out certain tasks or

react to certain messages, the viewers get familiar with the system and the underlying

concepts very quickly. Evaluations have shown these videos to be very popular with the

students, especially as they perceive a smaller cognitive distance in comparison to

explanatory texts and feel that these videos form a very efficient way of being accustomed

to the program and its usage. The success of these videos is also reflected in their

distribution: Several other universities have actively used these videos as part of their

Software Engineering teaching.

3.2 The use of animations

Algorithms and data structures are fundamental concepts in Computer Science, and their

understanding is a crucial aspect of Software Engineering education. Nontrivial algorithms

typically include complex rearrangements of the data structure they operate on. A good

example is the execution of insertion or deletion operations on an AVL tree: Inserting

elements into or deleting elements from the tree not only affects a single node, but also

triggers various rearrangements on other parts of the tree to ensure its balancing property.

Thus, to impart knowledge about the AVL tree, its dynamic behavior must be understood,

i.e. students need to know which rearrangement to execute for a given state and what the

underlying tree structure looks like afterwards. The same holds for many other algorithms

and data structures.

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 8

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

Figure 2 - Visual Interactive Data structure Environment, AVL tree

In the MuSofT project, we have employed interactive animations for teaching algorithms

and data structures [Aschenbrenner 2003a]. We developed a visualization environment

called VIDEA (Visual Interactive Data structure Environment for Animations,

[Aschenbrenner 2003b]) to create interactive animations. We use the animations in different

scenarios.

Firstly, the animations are used to introduce certain algorithms and data structures

during lectures or assignments. As an example, the aforementioned AVL tree is

constructed in an interactive manner, starting from an empty tree. The lecturer or a

student determines which nodes to add. The algorithm for balancing the tree is

automatically performed, with all intermediate steps being visualized by the animation.

Secondly, we created animations for interactive assignments: In this scenario, the

students themselves have to perform the algorithm by manually manipulating the data

structure. In the case of the AVL tree, the students have to balance a given unbalanced

tree by performing the corresponding rotations on the tree. The animation immediately

visualizes the results and provides feedback on correctness by highlighting those parts

of the tree that hurt the balancing property (Figure 2).

In a third learning scenario we have used animations during a lab course for visually

debugging algorithm implementations the students had to develop in Java. The

students worked in several teams, all of which had to solve the same problem: brewing

as much beer as possible in a given time. For solving the brewery problem, the

students had to consider several classical computer science problems such as the

•

•

•

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 9

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

knapsack problem or finding minimal spanning trees in graphs. The algorithms for the

subproblems were combined into an algorithm for the overall solution and implemented

in Java. A small Java framework connected each implementation to a set of Flash

animations visualizing the current state. Figure 3 shows a screenshot of a sample

animation.

Figure 3 - Brewing beer - the knapsack problem

We have evaluated the application of animations for all three learning scenarios. The

results of the evaluations are promising, since they show that the students are generally

more motivated, and, in comparison to a control group doing assignments without

animations, have a better understanding of the introduced algorithms and data structures.

For an example algorithm (finding a shortest path in a graph) and an example data

structure (AVL trees) the number of students who were able to correctly answer questions

regarding the dynamic behavior was significantly higher in the group doing animated

assignments than in the control group.

3.3 The use of dedicated tools

With today's software systems becoming more and more complex, teams getting larger,

and the development itself being distributed in space and time, the importance of a good

model of the system under construction is growing. The model serves as an architectural

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 10

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

blueprint and as a communication means for all stakeholders participating in a project. It

often decides on key factors of the resulting system, like correctness, reliability, security, or

maintainability. Recent initiatives like OMG's Model Driven Architecture (MDA) [Frankel

2003] even make the model the central artifact of the overall development process. For

students to be prepared for these requirements, it is necessary to teach them basic

modeling concepts as well as concrete languages, the Unified Modeling Language (UML)

[OMG 2003] surely being one - but not the only one - of these. If the size of models used,

for example, during assignments approaches that of real-life problems, pen-and-paper work

is no longer feasible. Tool support becomes necessary.

Unfortunately, the modeling tools typically used in industry, such as IBM's Rational Rose or

Borland's Together, have significant drawbacks when applied in an educational setting.

These drawbacks stem from the fact that professional modeling tools are rather

heavyweight pieces of software, both in terms of their feature set and the hardware

required to run them smoothly. Using such tools, there is a risk that merely the tool handling

is taught instead of the particular language or method supported. If different tools are used

for different notations, this situation becomes even worse, since the students have to be

familiar with all these programs before being able to work effectively. The tools' user

interfaces are quite complex, with lots of features aimed at efficient development in

industry. Too many features will distract an audience when using the tool for demonstration

purposes, for example during a lecture. In addition, for educational purposes it might

sometimes be desirable to use a simplified notation. This would require the tools to be

easily adaptable, which is usually not the case. Last but not least, commercial tools are

expensive, which might pose an additional problem if several hundred licenses are required

for a large computer science department.

These deficiencies of industrial tools have already been acknowledged for the field of

programming environments. BlueJ [Kölling 2003], jGrasp [Hendrix 2004] and Dr. Java

[Allen 2002] are examples of popular programming environments that were developed with

introductory courses in object-oriented programming in mind. All three tools share the

philosophy of a reduced feature-set and a simplified user interface, and could thus be

considered lightweight when compared to the industrial ones. All three add certain features

motivated by didactical problems usually encountered during introductory Java courses.

BlueJ employs a UML-like interactive graphical visualization of Java classes and objects to

foster an understanding of the semantics of these fundamental concepts. jGrasp adds to

this idea a means of visualizing the state of data structures at run-time. Dr. Java is centered

around a Java interpreter that can execute single Java commands without the need for

writing a complete program and its notorious main() method.

For the field of graphical modeling, similar tools are rare. Fujaba [Nickel 2000] is an

example of a UML CASE tool that provides a certain lightweightness when compared to

Rational Rose or Together. Yet, it doesn't add many features to take care of didactical

problems such as teaching the complex syntax and semantics inherent in a number of

UML-based languages.

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 11

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

Figure 4 – Screenshot of DAVE (Dortmund Automaton Visualizer and Editor)

This led the MuSofT project to the idea of developing a family of lightweight modeling tools

targeted at educational use only. This family of tools, which has been realized at the

University of Dortmund, currently encompasses structural and behavior diagram types of

the UML, as well as process modeling and conducting based on the Unified Process

[Jacobson 1998]:

The Dortmund Automaton Visualizer and Editor (DAVE) [Pleumann 2004], is a

graphical environment for working with Statecharts [Harel 1987], an extended version

of the classical Moore and Mealy automata. A screenshot of this tool is shown in Figure

4.

The Software Architecture Modeler (SAM) supports the graphical specification of

structural and behavioral aspects of component-based software architectures. The

notation used is a subset of the notation propagated by the UML 2.0 for that purpose.

The Process Modeler and the Process Tutor [Kopka 2004] are tools for teaching the

Unified Process. The former supports a student in tailoring the generic Unified Process

to the needs of a particular project, going down to the level of roles, activities, and the

artifacts produced by them. The latter is an easy-to-use process management tool that

allows to conduct the modeled process in reality, for example during a lab course.

In addition to a restricted core feature set borrowed from existing modeling tools and

particular attention being paid to usability concerns and a common user interface for all

tools, several didactically motivated features have been incorporated. These features

support the students in being acquainted with the particular modeling approaches. The

•

•

•

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 12

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

DAVE tool, for example, includes a sophisticated simulation engine that supports the

debugging of a Statechart in a visual manner. The simulation provides insights into the

complex execution semantics of the formalism: Active States and firing transitions are

highlighted properly while the students feed input events into the system. Output events are

recorded, and the whole simulation history is logged, so a simulation run can also be

analyzed post mortem.

In order to support those students who have problems with the very high level of

abstraction inherent in Statecharts and thus might not see their possible practical

applications, the simulation can be supported by a multimedia representation of a real-life

device. The embedded computer system of this device is supposed to be controlled by the

Statechart. Several such multimedia devices already exist: A washing machine, a coffee

maker, a glass-recycling machine, and a cash dispenser. They all give a vivid

representation of the relatively abstract Statechart model as well as some feedback on the

correctness of the model. In the case of the washing machine (Figure 5), if the laundry

comes out clean, the student's model is likely to be correct - if the machine floods the room

there is obviously something wrong with the part of the model that controls the valves.

Evaluations have shown that the lightweight MuSofT tools are particularly well-suited for

assignments during a Software Engineering class or lab course. The evaluations were

supported and surveyed by the Center for Higher Education Research and Faculty

Development at the University of Dortmund [Kamphans 2004a, Kamphans 2004b] with a

special emphasis on taking care of the gender aspect.

DAVE, for instance, was first used in the summer of 2003 during an Software Engineering

class in which a number of visual formalisms were taught, Statecharts being one of them.

About 100 students used the tool to carry out their assignments over a period of two weeks.

One of the assignments incorporated the aforementioned washing machine. Following the

assignments, a formal questionnaire was handed out to the students. The feedback gained

from this questionnaire was very positive. The students appreciated the tool's simple user

interface (89%) and the integrated simulation engine (90%). Most of them found that the

simulation had improved their understanding of Statechart semantics (81%). The students

would recommend the tool to colleagues (75%) and requested similar tools for other parts

of the class (86%).

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 13

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

Figure 5 - Animations used for washing machine example

4 eLearning Software Engineering

Software Engineering is the discipline concerned with the application of theory, knowledge,

and practice for effectively and efficiently building software systems that satisfy the

requirements of users and customers. On the one hand, eLearning means are supported

by different software systems and thus Software Engineering techniques have to be applied

to develop high-quality tools supporting eLearning. On the other hand, Software

Engineering techniques can be helpful for developing learning objects (digital entities that

may be used for learning, education or training). Especially, if we have multimedia learning

objects, which can be considered as a form of software, we can apply software

development processes that allow us to develop learning objects in a structured way to

achieve different qualities. As an example, we show in section 4.1 a learning object, which

is an autonomous software system.

In the rest of this section, we want to consider the quality aspect of reuse in more detail.

This aspect can be regarded from different perspectives. In Section 4.2, we explain how we

enable reusability of learning objects within MuSofT by using existing standards. Further,

we can view the problem of reusability from a legal perspective. To handle the legal aspect,

we have developed a MuSofT license (section 4.3) that we use to publish our material. Our

MuSofT portal for managing and distributing learning objects assists in all three aspects

(section 4.4).

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 14

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

4.1 The development of dedicated tools

As mentioned before, the MuSofT project has developed a number of graphical modeling

tools dedicated to Software Engineering education. Section 3.3 has given a brief overview

on some of these tools from a user's perspective: In addition to the core modeling

functionality, the tools were to include features that support the understanding of the

modeling formalism itself. The simulation engine sketched for the DAVE tool is a good

example; hypertext facilities included in all the tools are another. Yet, apart from fulfilling

these rather functional requirements, some non-functional requirements had to be taken

into account, too:

Usability. The modeling tools had to be easy to use. The user interface complexity had

to be significantly lower than that of professional tools. In the ideal case, all tools were

to share a common user interface.

Maintainability. Development and maintenance had to require as little effort as

possible. The maintenance was of particular importance, since the tools still had to be

maintained and improved when the project's funding had already ended.

To avoid implementation of each of the mentioned modeling applications individually and

from scratch (thus repeatedly reinventing the wheel) and to also establish a common look

and feel, a Java/Swing-based framework for lightweight modeling tools was developed. The

framework provides two main components: A more-or-less fixed user interface including a

working application frame, and a variable graphical language described by means of a

metamodel underneath.

To be suitable for educational purposes, the user interface was designed to be simple,

intuitive to use and non-distracting. The model itself occupies the largest part of the screen,

because this is the application's focus. All graphical aspects of modeling, like moving or

resizing elements or drawing graphical connections between them, are handled here.

Everyday functions, such as loading, saving, printing, or adding new elements to the model,

are easily accessible from a toolbar atop the diagram area, with clear graphical icons

describing each function (Figure 4).

In addition to the main diagram area and the toolbar, the application provides a number of

user interface components with more specific purposes:

The Navigator shows a tree-like representation of the model (based on the nesting of

elements) as well as an overview in the form of a map. It is useful for models the size

of which is beyond a single screen.

The Inspector displays the properties of the currently selected model element and

allows their modification. It also supports the annotation of individual model elements

by means of hypertext. Thus, the students can make notes on their model.

These two components are placed left to the diagram area, honoring the common principle

of placing navigational items on the screen's left side. Both can be hidden when only the

diagram itself is of interest, for example during a lecture. To the right of the diagram, a

hypertext window can be shown. It allows annotating each model element with a hypertext

page that is displayed when the element is selected. Possible applications are complex,

•

•

•

•

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 15

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

annotated models which the students can study. It can also be used for handing out

exercises to the students in digital form. Last but not least, it contains the online help for

each tool.

The user interface provides different views on a model whose syntax and semantics is

determined by an application-specific metamodel. This metamodel - together with the

figures that make up its graphical representation - is easily plugged into the application

frame by implementing each metamodel entity as a small Java class, defining its properties

and the syntax rules it obeys to. Core Java classes for deriving application-specific

metamodels from are already provided by the framework. These could be considered a

meta-metamodel shared by all tools, although they are not on the meta-metamodel (M3)

level in a strict technical sense. Thus, we usually refer to them as basic metamodel

elements.

In order to have the same user interface work on all application-specific metamodels

without adjustments, these basic metamodel elements provide introspection mechanisms

that allow querying an element's properties and relationships with other elements, and

possibly change them. These mechanisms are used for loading, saving, and printing

models on a generic basis as well as for providing a foundation on which the

aforementioned Navigator, Inspector, and Hypertext components could be built.

This framework architecture has already proven to be valuable. In addition to the MuSofT

tool family mentioned in Sec. 3.3, several other modeling tools have been implemented

over time, most of them by students. One example is the Petri Net editor PETRA. Originally

started as a diploma thesis, it has grown into a full-featured simulator and analyzer since

[Fronk 2004].

4.2 eLearning Standards

One important aspect Software Engineering is concerned with is the reuse of existing

systems for building new software systems. A fundamental basis for facilitating sharing and

exchanging software systems is a well-structured standardized description. Often the

structures of these descriptions have to be adapted for different problem domains.

The aim of the MuSofT project was to develop a set of learning objects for Software

Engineering courses that can be grouped according to the requirements of a special course

at a university. Therefore, we needed a common conceptual data schema for the

description of our learning objects with metadata to ensure a high degree of semantic

interoperability of our descriptions. Further, our metadata descriptions should facilitate

search, evaluation, acquisition, and use of learning objects by other instructors not

concerned with the MuSofT-project. Instead of developing a proprietary conceptual data

schema, we searched for existing eLearning standards for describing learning objects that

we can customize according to our requirements. We decided to adapt the IEEE Learning

Object Metadata (LOM) [IEEE 2002] standard. LOM is a broadly accepted standard that is

part of the most important eLearning standards like the standards from the IMS Global

Learning Consortium [2] and ADL SCORM (Sharable Content Object Reference Model)

[ADL 2004].

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 16

file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/res/#ftn.d9044e445
https://nbn-resolving.de/urn:nbn:de:0009-5-2016

In a next step, we specified the relevant characteristics for describing our learning objects

and adopted the LOM standard accordingly. In order to maximize the semantic

interoperability of our metadata descriptions, we carefully mapped our needed metadata

information to the data elements of the LOM standard. Mainly we used the feature of LOM

to specify vocabularies to restrict the content of some data elements. In these cases, we

predominantly used existing, standardized vocabularies. E.g., LOM specifies data elements

for classifying a learning object according to a classification system. In order to maximize

semantic interoperability with computer science learning objects from other projects, we

use the ACM Computing Classification System [ACM 2005] instead of a proprietary

classification system. The ACM classification system is a broadly-accepted taxonomy that

structures the field of computer science over different levels. As a result, we developed a

conceptual data schema for MuSofT that is strictly conforming to the LOM standard, which

means it consists solely of LOM data elements.

The LOM standard is intended to support consistent definition of metadata elements across

multiple implementations, but does not include information on how to represent metadata in

a machine-readable format, necessary for exchanging metadata. We use a representation

of the metadata in XML (Extensible Markup Language) developed by IMS. The IMS

representation is used by different eLearning applications and it is a part of the SCORM

standard, which integrates different eLearning standards and specifications into one bigger,

general standard. We can use the IMS standard without any changes except that we do not

use all of the optional elements.

Beyond a data format for our conceptual data model, we need a standardized way to

exchange digital learning objects including their metadata descriptions between different

systems or tools. Two important content packaging formats are available today. On the one

side, we have the IMS content packaging standard [IMS 2003] and on the other side the

content packaging part of the SCORM standard. IMS content packaging is a part of the

SCORM standard. The SCORM standard additionally allows exchanging information about

the intended behavior of a collection of learning resources. We decided to use only the IMS

content packaging format, because it is sufficient for us and, in contrast to the SCORM

content packaging, it is implemented by different tool vendors (e.g. Blackboard, Centra,

CourseKeeper).

4.3 Open content development

When making our work available to the public, we want our material to be freely usable and

adaptable for educational purposes, but we do not want it to be exploited commercially

without the authors' prior consent. Thus we are in a situation similar to the open source

community, but the legal space in which we have to move is a little different: First, we are

dealing with documents the character of which is somewhat extended compared to the

traditional one. Second, we want our collection of teaching material to be modifyable and

extensible by others, so that content may in the long run also be provided that was not

produced exclusively in the MuSofT project. Third, we aim mainly at the German

educational system, so that German law applies (true, German law undergoes some

changes with respect to copyright issues, but its fundamental principles will not change).

Given these observations, we asked the Universitätsverbund Multimedia (UVM), an agency

run by the state of Northrhine-Westphalia that has been set up with the broad goal of

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 17

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

furthering the use of multimedia in the state's universities. The request was to construct an

open content license for our purposes. Alas - it turned out that we were breaking new

grounds here - such a license had not been constructed before. But UVM complied with our

request, co-operating with some specialists in that very new and apparently very exciting

area of German law.

The present and the future content provided by the MuSofT project is protected under this

new MuSofT Open Content License [Jaeger 2003]: use and modification are free for

nonprofit educational purposes, just as we intended. The license is sticky, similar to the

GNU General Public License (GPL) used in many open source software projects, since it

propagates through modifications. It would also have been possible to use a Creative

Commons license. Yet, Creative Commons has a strong focus on document-like content

(text, audio, video, ...), while a significant portion of the MuSofT material consists of

software. Thus, we needed a license that makes a distinction between source code and

executable code and regulates the use of both. Finally, Creative Commons licenses have

only been adapted to German law in mid-2004, where we needed to make provisions for

proper licensing of our material much earlier than that.

We think that with the MuSofT license we have found a legal protection that does not

constrain the future use of our material through either ourselves or our contributing

colleagues.

4.4 eLearning Portals

Annotation of e-learning material by means of metadata and an appropriate licensing

scheme were two necessary requirements for making sure that the material can undergo

sustainable (re-) use, but they were not sufficient. A central, well-known distribution site on

the Internet was required where authors could store their annotated material and potential

users could easily find material suiting their requirements. We have termed this distribution

site the MuSofT portal. Its goal is the management and distribution of the individual learning

objects contributed by the various partners and the facilitation of sustainable reuse of the

material inside and outside the MuSofT community. The MuSofT portal is not a learning

management system, since the development of such infrastructure was not a concern of

the project, and several learning management systems are already in use at universities.

Envisioned users of the MuSofT portal are teachers at universities or other institutions of

higher education who are looking for multimedia Software Engineering material or want to

distribute their own material. It was clear from the beginning that the initial users would

recruit from the MuSofT consortium itself, but the later integration of external users was

desired. We thus chose to distinguish among three different user classes:

Consumers search and download material for application in their classes. They can

browse the contents of the portal by their ACM classification (Figure 6), by authors, or

by granularity of material (Figure 7). Consumers can also perform queries for material

based on any of the supported metadata fields. When the desired material has been

found, its metadata can be inspected (Figure 8) and the material can be downloaded in

the form of an IMS content package (Section 4.2) that includes both the learning

object(s) and the corresponding metadata and licensing information. The standardized

export format provides for easily importing the material into an existing learning

•

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 18

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

management system. Consumers can also send feedback to the author of a learning

object and request e-mail notifications for updates of certain learning objects.

Consumers do not require a login and password for the portal. They are treated as

anonymous users.

Authors produce learning objects and make them available through the portal. For

someone to become an author, he or she needs to request a login and password that

grants write access to the system. The system makes sure that authors can only

modify or delete material that was uploaded by them. Yet, it is also possible that a

number of authors choose to collaborate on the same learning object.

Administrators are responsible for general management tasks, such as adding new

users or maintaining the subset of the ACM classification tree supported by the

system. If need arises, that is, if too many learning objects reside in the same

classifier, authors can request the addition of new ACM classifiers.

The MuSofT portal can be seen as a specialized form of content management system

(CMS) for multimedia content. Thus, it would have been basically possible to implement it

based on top of an existing CMS. Yet, we found that existing CMS did not meet our

requirements:

A CMS usually distinguishes between a development ("production") view and a

presentation ("live") view of the content. This requires the authors to have more

knowledge of the system, since the development view is typically more complex than

the presentation view. Many systems also assume a dedicated editor who approves

changes and a corresponding system-specific editorial workflow - the latter not

necessarily being identical to the workflow desired by MuSofT.

A CMS usually supports a fixed set of metadata. It would have been complicated, if not

impossible, to integrate the LOM metadata or the hierarchical ACM classification

scheme. None of the systems we evaluated, in particular, supported searching along a

hierarchy. In addition, we expected that the set of supported metadata might change

over time, so we were looking for a more database-centered solution.

Dissatisfied with existing CMS solutions, we chose to implement the MuSofT portal based

on the Infolayer system [Pleumann 2003]. The Infolayer is an object-oriented database the

schema of which is specified in the form of a UML class diagram possibly annotated with

additional constraints specified in the Object Constraint Language (OCL). The Infolayer's

database content is accessible via a Web interface that is generated on the fly based on

the database schema. Thus, with only a conceptual class diagram resulting from our early

considerations of the LOM metadata to support, we already had a working prototype of the

portal. We successively improved this prototype by adding to the system so-called

templates that specified the layout of individual pages by means of HTML. Nearly all of the

development work for the portal was done on the level of either the UML model or the

HTML templates. Only few features, such as the e-mail notifications or the IMS content

package export, required a "real" implementation. Since in particular the set of ACM

classifiers used for structuring learning objects is not hard-coded into the system, but

maintained in the database itself, the MuSofT portal is easily reused for other areas than

Software Engineering: Only a couple of HTML templates specifying the overall layout and

the content of the classification scheme would need to be replaced.

•

•

•

•

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 19

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

Figure 6 - ACM classification tree in the MuSoft portal

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 20

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

Figure 7 - Browsing learning material by granularity in the MuSoft portal

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 21

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

Figure 8 - Annotating a learning object with LOM metadata in the MuSoft portal

5 Conclusions and Future Perspectives

The MuSofT project was the first joint research project in Germany with a special emphasis

on investigating and building educational content and supporting tools for teaching

Software Engineering topics. Based on their background, the project partners focused on a

subset of Software Engineering topics and created new lecture units by using e.g.

multimedia techniques like videos or animations.

A main achievement of the project is the MuSofT portal, which offers a unified access to all

MuSofT teaching material. The newly developed MuSofT open content license ensures that

the material can be used, adapted, and restored by any lecturer without running into

copyright problems. Currently, the portal offers over 250 different learning objects in the

field of Software Engineering. The material covers large parts of a typical undergraduate

Software Engineering education (e.g., introduction to databases, data structures, and

structured development) as well as specialized topics and tools. All material has been

developed for and tried in actual lectures. The resulting learning objects are richly

annotated with metadata. Interest in the material has been high: overall more than 15,000

visits to individual learning objects contained in the database have been registered, with a

total of several thousand downloads so far. To our knowledge, musoft.org thus currently

forms the largest public offering of free Software Engineering lecture material in German.

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 22

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

Nevertheless, the MuSofT project could only be a starting point. Due to the limited number

of project partners, only a few Software Engineering topics could be treated in depth within

the project. Follow-up projects and Germany-wide initiatives are needed to maintain and fill

the MuSofT portal in the future with additional material. Only in this case, the MuSofT portal

will become THE central source of teaching material for Software Engineering courses. In

order to achieve this, we are currently following two routes: the first is to get MuSofT, its

tools and its possibilities for the Software Engineering community in Germany better known

in this community by changing the attitude from "well, we have heard that there is

something going on" to "what are the MuSofT-tools, where are they available, and how can

I contribute?". This approach has to fight against a typical attitude in teaching that is very

close to the not invented here syndrome we all know from the practical obstacles reusing

software, which is somewhat counterintuitive, given the ubiquitous complaints on lack of

material for teaching. The second route is to attract additional funding for broadening the

approach, in particular for extending and consolidating the infrastructure.

Further information on the MuSofT project and its results can be found in [Alfert 2003a,

Alfert 2003b, Doberkat 2002a, Doberkat 2002b, Doberkat 2004].

Acknowledgments

The MuSofT project has been conducted by Ernst-Erich Doberkat and Gregor Engels. Both

have enjoyed the successful work in the project a lot and would like to thank all project

partners and their groups for the excellent cooperation. Klaus Alfert and later Corina Kopka

were in charge of the daily chores in project management, Stefan Dißmann not only

provided moral support but also gave very practical advice whenever we needed it.

Christiane Dusch, Ira Knapke and Andreas Wolfrum of UVM gave legal advice and

rendered the open content license a reality. Last but not least we want to thank Sigrid Metz-

Göckel and her group for her work which helped rendering MuSofT an environment

enjoyable also for female students.

References

(1) [ACM 2005] Association for Computing Machinery: The ACM Computing Classification

System, 1998 version. http://www.acm.org/class (last check 2005/08/23)

(2) [ADL 2004] Advanced Distributed Learning (ADL): Sharable Content Object Reference

Model (SCORM®) 2004, 2nd Edition, Overview, 2004

(3) [Alfert 2003a] Alfert, Klaus; Doberkat, Ernst-Erich; Engels, Gregor: MuSofT: Multimedia

in der Softwaretechnik. In: Bode, A.; Desel, J.; Rathmayer, S.; Wessner, M. (eds.): DeLFI

2003, Tagungsband der 1. e-Learning Fachtagung Informatik, Garching, LNI-37, 2003,

pages 115-119, Gesellschaft für Informatik

(4) [Alfert 2003b] Alfert, Klaus; Doberkat, Ernst-Erich; Engels, Gregor; Lohmann, Marc;

Magenheim, Johannes; Schürr, Andy: MuSofT: Multimedia in der Softwaretechnik. In:

Siedersleben, J.; Weber-Wulff, D. (eds.): SEUH 8 Software Engineering im Unterricht der

Hochschulen, Berlin 2003, pages 70 - 80. Heidelberg, d Punkt-Verlag, Februar 2003.

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 23

http://www.acm.org/class
http://www.acm.org/class
https://nbn-resolving.de/urn:nbn:de:0009-5-2016

(5) [Allen 2002] Allen, Eric; Cartwright, Robert; Stoler, Brian: DrJava - A Lightweight

Pedagogic Environment for Java. Proceedings of the 33rd SIGCSE Technical Symposium

on Computer Science Education. ACM Press, 2002.

(6) [Aschenbrenner 2003a] Aschenbrenner, Peter: Eine Lerneinheit für die multimediale

Lehre von Algorithmen und Datenstrukturen. In: Bode, Arndt; Desel, Jörg; Ratmayer,

Sabine, Wessner, Martin (Herausgeber): DeLFI 2003, Proceeding der 1. e-Learning

Fachtagung Informatik. Number P-37 of Lecture Notes in Informatics, pages 412-421.

2003.

(7) [Aschenbrenner 2003b] Aschenbrenner, Peter; Schürr, Andy: Generating Interactive

Animations from Visual Specifications. In: Proceedings of 2003 IEEE Symposium on

Human Centric Computing Languages and Environments. 2003, Pages 169-176. Auckland,

New Zealand

(8) [Doberkat 2002a] Doberkat, Ernst-Erich; Engels, Gregor: Multimedia in der Informatik-

Lehre. In: Schubert, S.; Reusch, B.; Jesse, N. (eds.): GI Jahrestagung, 2002, LNI 19,

pages 377 - 384, Gesellschaft für Informatik

(9) [Doberkat 2002b] Doberkat, Ernst-Erich; Engels, Gregor: Multimedia in der

Softwaretechnik. In: Informatik Forschung und Entwicklung. 2002, 17(1):41-44.

(10) [Doberkat 2004] Doberkat, Ernst-Erich, Engels, Gregor; Kopka, Corina (eds.):

Abschlussbericht des Projektes MuSofT "Multimedia in der SoftwareTechnik". Technical

Report. Chair for Software Technology. University of Dortmund. 2004. MuSofT Report No.

5.

(11) [Frankel 2003] Frankel, David S.: Model Driven Architecture - Applying MDA to

Enterprise Computing. Wiley. 2003.

(12) [Fronk 2004] Fronk, Alexander; Pleumann, Jörg: Relationenalgebraische Analyse von

Petrinetzen - Konzepte und Implementierung. In: Kindler, Ekkart (Hrsg.): Proceedings of the

11th Workshop on Algorithms and Tools for Petri Nets. Technical Report. University of

Paderborn. 2004, Pages 61-68.

(13) [Jacobson 1998] Jacobson, Ivar; Booch, Grady; Rumbough, James: The Unified

Software Development Process. Addision Wesley. Reading Massachusetts, 1999.

(14) [Jaeger 2003] Jaeger, Till; Metzger, Axel: Open Content-Lizenzen nach deutschem

Recht. In: MultiMedia und Recht, 7/2003. p 431-438

(15) [Harel 1987] Harel, David: Statecharts - A Visual Formalism for Complex Systems.

Science of Computer Programming. 1987, 8(3): p 231-274.

(16) [Hendrix 2004] Hendrix, Dean; Cross, James; Borowski; Larry: An Extensible

Framework for Providing Dynamic Data Structure Visualizations in a Lightweight IDE.

Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education.

ACM Press, 2004.

(17) [Hodel 1997] Hodel, Werner: Mississippi Queen, Goldsieber Spielverlag 1997.

(18) [IEEE 2002] IEEE: Draft Standard for Learning Object Metadata, July 2002

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 24

https://nbn-resolving.de/urn:nbn:de:0009-5-2016

(19) [IMS 2003] IMS Global Learning Consortium, Inc.: IMS Content Packaging - Version

1.1.3 Final Specification, 2003, http://www.imsglobal.org/content/packaging/index.html (last

check 2005/01/27)

(20) [Kamphans 2004a] Kamphans, Marion; Metz-Göckel, Sigrid, Tigges, Anja; Drag, Anna;

Schröder, Ellen: Evaluation des Editors DAVE in der informatischen Hochschullehre.

Technical Report. Chair for Software Technology. University of Dortmund. 2004. MuSofT

Report No. 6.

(21) [Kamphans 2004b] Kamphans, Marion; Metz-Göckel, Siegrid; Schöttelndreier, Aira;

Drag, Anna: Der Unified Process im Test. Evaluationsergebnisse zum Einsatz des UP in

der Informatik-Lehre. Technical Report. Chair for Software Technology. University of

Dortmund. 2004. MuSofT Report No. 7.

(22) [Kelter 2002] Kelter, Udo: Versions- und Konfigurationsmanagement in der Ausbildung

in praktischer Informatik. Softwaretechnik-Trends, 2002, 22(1): p 26-27.

(23) [Kölling 2003] Kölling, Michael; Quig, Bruce; Patterson, Andrew; Rosenberg, John: The

BlueJ System and its Pedagogy. Journal of Computer Science Education, Special Issue on

Learning and Teaching Object Technology 13(4), 2003.

(24) [Kopka 2004] Kopka, Corina; Schmedding, Doris; Schröder, Jens: Der Unified Process

im Grundstudium -Didaktische Konzeption, Einsatz von Lernmodulen und Erfahrungen. In:

Engels, Gregor; Seehusen, Silke; (eds.): Proceedings of the 2nd German e-Learning

Conference for Computer Science (DeLFI). Paderborn, Gesellschaft für Informatik, 2004,

LNI-52, pages 127-138

(25) [Nickel 2000] Nickel, Ulrich; Niere, Jörg; Zündorf, Albert: Tool demonstration - The

FUJABA environment. Proceedings of the 22nd International Conference on Software

Engineering (ICSE), Limerick, Ireland. ACM Press, 2000.

(26) [OMG 2003] Object Management Group: The Unified Modeling Language (UML)

Specification 1.5. Technical Report. http://www.omg.org/cgi-bin/doc?formal/03-03-01. 2003.

(last check 2005/01/27)

(27) [Pleumann 2003] Pleumann, Jörg; Haustein, Stefan: A Model Driven Runtime

Environment for Web Applications. In: Stevens, Perdita; Whittle, Jon; Booch, Grady (eds.):

Proceedings of the 6th International UML Conference. San Francisco. Number 2863 of

Lecture Notes in Computer Science, Springer. 2003, pages 190-204.

(28) [Pleumann 2004] Pleumann, Jörg: Erfahrungen mit dem multimedialen didaktischen

Modellierungswerkzeug DAVE. In: Engels, Gregor; Seehusen, Silke (eds.): Proceedings of

the 2nd German e-Learning Conference for Computer Science (DeLFI). Gesellschaft für

Informatik, 2004, Paderborn, LNI-52, pages 55-66.

(29) [Standish 1995] The Standish Group Report: CHAOS. 1995

[1] The MuSofT project has been funded by BMBF in the programme “Neue Medien in der

Bildung” between 2001 and 2004 (grant 08NM098)

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 25

http://www.imsglobal.org/content/packaging/index.html
http://www.imsglobal.org/content/packaging/index.html
http://www.omg.org/cgi-bin/doc?formal/03-03-01
http://www.omg.org/cgi-bin/doc?formal/03-03-01
file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/eleed.campussource.de___archive__2__201__#d9044e4
https://nbn-resolving.de/urn:nbn:de:0009-5-2016

[2] http://www.imsproject.org/

Doberkat E, Engels G, Hausmann JH, Lohmann M, Pleumann J, Schröder J (2005). Software Engineering and eLearning: The MuSofT

Project. eleed, Issue 2

eleed urn:nbn:de:0009-5-2016 26

file:///Users/muehlpfordt/projects/eleed/doc/OJS-Transfer/pdf/eleed.campussource.de___archive__2__201__#d9044e445
http://www.imsproject.org/
http://www.imsproject.org/
https://nbn-resolving.de/urn:nbn:de:0009-5-2016

	Software Engineering and eLearning: The MuSofT Project [1] www.musoft.org
	1 Introduction
	2 The MuSofT project
	3 Software Engineering eLearning
	3.1 The use of video techniques
	3.2 The use of animations

	3.3 The use of dedicated tools
	4 eLearning Software Engineering
	4.1 The development of dedicated tools
	4.2 eLearning Standards
	4.3 Open content development
	4.4 eLearning Portals

	5 Conclusions and Future Perspectives
	Acknowledgments
	References

